GA-Deep Neural Network Optimization for Image Classification

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification

Improve classification accuracy of deep CNNs using hierarchical classification scheme.  Group classes based on confusion matrix.  Use networks of identical topology at various levels.

متن کامل

PolSAR Image Classification Based on Deep Convolutional Neural Network

For introducing the advantages of feature learning and multilayer network in the interpretation of Polarimetric synthetic aperture radar (PolSAR) image, a classification algorithm based on deep convolutional neural network is proposed, and is used for PolSAR image classification. Firstly, a special convolutional neural network (CNN) for PolSAR image is constructed, secondly, a large number of P...

متن کامل

Some Improvements on Deep Convolutional Neural Network Based Image Classification

We investigate multiple techniques to improve upon the current state of the art deep convolutional neural network based image classification pipeline. The techniques include adding more image transformations to the training data, adding more transformations to generate additional predictions at test time and using complementary models applied to higher resolution images. This paper summarizes o...

متن کامل

An Abstract Deep Network for Image Classification

In order to allow more flexible and general learning, it is an advantage for artificial systems to be able to discover re-usable features that capture structure in the environment, known as Deep Learning. Techniques have been shown based on convolutional neural networks and stacked Restricted Boltzmann Machines, which are related to some degree with neural processes. An alternative approach usi...

متن کامل

Sparse Deep Stacking Network for Image Classification

Sparse coding can learn good robust representation to noise and model more higher-order representation for image classification. However, the inference algorithm is computationally expensive even though the supervised signals are used to learn compact and discriminative dictionaries in sparse coding techniques. Luckily, a simplified neural network module (SNNM) has been proposed to directly lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Trends in Computer Science and Engineering

سال: 2019

ISSN: 2278-3091

DOI: 10.30534/ijatcse/2019/3681.62019